Taking advantage of matrix sparseness, the function only evaluates
fun
between pairs of elements of A
and B
where
either A
or B
have non-zero values. This can be helpful
to implement other binary operators between sparse matrices that may
not be implemented in the Matrix package.
matrix_compare(A, B, fun)
compare_matrix(A, B, fun)
An object of class dgCMatrix
of size n*m
.
Instead of comparing element by element, the function loops through each matrix non-zero elements to make the comparisons, which in the case of sparse matrices can be more efficient (faster). Algorithmically it can be described as follows:
# Matrix initialization
init ans[n,m];
# Looping through non-zero elements of A
for e_A in E_A:
ans[e_A] = fun(A[e_A], B[e_A])
# Looping through non-zero elements of B and applying the function
# in e_B only if it was not applied while looping in E_A.
for e_B in E_B:
if (ans[e_B] == Empty)
ans[e_B] = fun(A[e_B], B[e_B])
compare_matrix
is just an alias for matrix_compare
.
Other dyadic-level comparison functions:
vertex_covariate_compare()
,
vertex_covariate_dist()
# These two should yield the same results -----------------------------------
# Creating two random matrices
set.seed(89)
A <- rgraph_ba(t = 9, m = 4)
B <- rgraph_ba(t = 9, m = 4)
A;B
#> 10 x 10 sparse Matrix of class "dgCMatrix"
#> [[ suppressing 10 column names ‘1’, ‘2’, ‘3’ ... ]]
#>
#> 1 1 . . . . . . . . .
#> 2 1 . . . . . . . . .
#> 3 . . 2 . . . . . . .
#> 4 . . 1 2 . . . . . .
#> 5 1 2 . . 1 . . . . .
#> 6 1 . 2 . 1 . . . . .
#> 7 2 1 . . . 1 . . . .
#> 8 1 . 1 1 1 . . . . .
#> 9 1 . 1 1 1 . . . . .
#> 10 . 1 . 1 . . . 2 . .
#> 10 x 10 sparse Matrix of class "dgCMatrix"
#> [[ suppressing 10 column names ‘1’, ‘2’, ‘3’ ... ]]
#>
#> 1 1 . . . . . . . . .
#> 2 . 1 . . . . . . . .
#> 3 . 2 . . . . . . . .
#> 4 2 . 1 . . . . . . .
#> 5 1 1 . 1 1 . . . . .
#> 6 . 1 1 . 2 . . . . .
#> 7 . . 2 1 1 . . . . .
#> 8 1 1 1 . . 1 . . . .
#> 9 2 . . . 1 1 . . . .
#> 10 . 1 . . . . 1 . 1 1
# Comparing
ans0 <- matrix_compare(A,B, function(a,b) (a+b)/2)
ans1 <- matrix(0, ncol=10, nrow=10)
for (i in 1:10)
for (j in 1:10)
ans1[i,j] <- mean(c(A[i,j], B[i,j]))
# Are these equal?
all(ans0[] == ans1[]) # Should yield TRUE
#> [1] TRUE