Addition, subtraction, network power of diffnet and logical operators such as
&
and |
as objects
# S3 method for class 'diffnet'
x^y
graph_power(x, y, valued = getOption("diffnet.valued", FALSE))
# S3 method for class 'diffnet'
y/x
# S3 method for class 'diffnet'
x - y
# S3 method for class 'diffnet'
x * y
# S3 method for class 'diffnet'
x & y
# S3 method for class 'diffnet'
x | y
A diffnet class object
Using binary operators, ease data management process with diffnet.
By default the binary operator ^
assumes that the graph is valued,
hence the power is computed using a weighted edges. Otherwise, if more control
is needed, the user can use graph_power
instead.
Other diffnet methods:
%*%()
,
as.array.diffnet()
,
c.diffnet()
,
diffnet-class
,
diffnet_index
,
plot.diffnet()
,
summary.diffnet()
# Computing two-steps away threshold with the Brazilian farmers data --------
data(brfarmersDiffNet)
expo1 <- threshold(brfarmersDiffNet)
expo2 <- threshold(brfarmersDiffNet^2)
# Computing correlation
cor(expo1,expo2)
#> threshold
#> threshold 0.7684998
# Drawing a qqplot
qqplot(expo1, expo2)
# Working with inverse ------------------------------------------------------
brf2_step <- brfarmersDiffNet^2
brf2_step <- 1/brf2_step
# Removing the first 3 vertex of medInnovationsDiffnet ----------------------
data(medInnovationsDiffNet)
# Using a diffnet object
first3Diffnet <- medInnovationsDiffNet[1:3,,]
medInnovationsDiffNet - first3Diffnet
#> Dynamic network of class -diffnet-
#> Name : Medical Innovation
#> Behavior : Adoption of Tetracycline
#> # of nodes : 122 (1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, ...)
#> # of time periods : 18 (1 - 18)
#> Type : directed
#> Final prevalence : 1.00
#> Static attributes : city, detail, meet, coll, attend, proage, length, ... (58)
#> Dynamic attributes : -
# Using indexes
medInnovationsDiffNet - 1:3
#> Dynamic network of class -diffnet-
#> Name : Medical Innovation
#> Behavior : Adoption of Tetracycline
#> # of nodes : 122 (1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, ...)
#> # of time periods : 18 (1 - 18)
#> Type : directed
#> Final prevalence : 1.00
#> Static attributes : city, detail, meet, coll, attend, proage, length, ... (58)
#> Dynamic attributes : -
# Using ids
medInnovationsDiffNet - as.character(1001:1003)
#> Dynamic network of class -diffnet-
#> Name : Medical Innovation
#> Behavior : Adoption of Tetracycline
#> # of nodes : 122 (1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011, ...)
#> # of time periods : 18 (1 - 18)
#> Type : directed
#> Final prevalence : 1.00
#> Static attributes : city, detail, meet, coll, attend, proage, length, ... (58)
#> Dynamic attributes : -