Fits the Bass Diffusion model. In particular, fits an observed curve of proportions of adopters to \(F(t)\), the proportion of adopters at time \(t\), finding the corresponding coefficients \(p\), Innovation rate, and \(q\), imitation rate.
fitbass(dat, ...)
# S3 method for class 'diffnet'
fitbass(dat, ...)
# Default S3 method
fitbass(dat, ...)
# S3 method for class 'diffnet_bass'
plot(
x,
y = 1:length(x$m$lhs()),
add = FALSE,
pch = c(21, 24),
main = "Bass Diffusion Model",
ylab = "Proportion of adopters",
xlab = "Time",
type = c("b", "b"),
lty = c(2, 1),
col = c("black", "black"),
bg = c("lightblue", "gray"),
include.legend = TRUE,
...
)
bass_F(Time, p, q)
bass_dF(p, q, Time)
bass_f(Time, p, q)
Either a diffnet object, or a numeric vector. Observed cumulative proportion of adopters.
Further arguments passed to the method.
An object of class diffnet_bass
.
Integer vector. Time (label).
Passed to matplot
.
Passed to matplot
.
Passed to matplot
.
Character scalar. Label of the y
axis.
Character scalar. Label of the x
axis.
Passed to matplot
.
Passed to matplot
.
Passed to matplot
.
Passed to matplot
.
Logical scalar. When TRUE
, draws a legend.
Integer vector with values greater than 0. The \(t\) parameter.
Numeric scalar. Coefficient of innovation.
Numeric scalar. Coefficient of imitation.
An object of class nls
and diffnet_bass
. For more
details, see nls
in the stats package.
The function fits the bass model with parameters \([p, q]\) for values \(t = 1, 2, \dots, T\), in particular, it fits the following function:
$$ F(t) = \frac{1 - \exp{-(p+q)t}}{1 + \frac{q}{p}\exp{-(p+q)t}} $$
Which is implemented in the bass_F
function. The proportion of adopters
at time \(t\), \(f(t)\) is:
$$ f(t) = \left\{\begin{array}{ll} F(t), & t = 1 \\ F(t) - F(t-1), & t > 1 \end{array}\right. $$
and it's implemented in the bass_f
function.
For testing purposes only, the gradient of \(F\) with respect to \(p\)
and \(q\) is implemented in bass_dF
.
The estimation is done using nls
.
Bass's Basement Institute Institute. The Bass Model. (2010). Available at: https://web.archive.org/web/20220331222618/http://www.bassbasement.org/BassModel/. (accessed live for the last time on March 29th, 2017.)
Other statistics:
classify_adopters()
,
cumulative_adopt_count()
,
dgr()
,
ego_variance()
,
exposure()
,
hazard_rate()
,
infection()
,
moran()
,
struct_equiv()
,
threshold()
,
vertex_covariate_dist()
# Fitting the model for the Brazilian Farmers Data --------------------------
data(brfarmersDiffNet)
ans <- fitbass(brfarmersDiffNet)
# All the methods that work for the -nls- object work here
ans
#> Nonlinear regression model
#> model: dat ~ bass_F(Time, p, q)
#> data: parent.frame()
#> p q
#> 0.002279 0.336735
#> residual sum-of-squares: 0.05184
#>
#> Number of iterations to convergence: 10
#> Achieved convergence tolerance: 3.515e-06
summary(ans)
#>
#> Formula: dat ~ bass_F(Time, p, q)
#>
#> Parameters:
#> Estimate Std. Error t value Pr(>|t|)
#> p 0.0022787 0.0007245 3.145 0.00533 **
#> q 0.3367354 0.0268004 12.565 1.19e-10 ***
#> ---
#> Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
#>
#> Residual standard error: 0.05223 on 19 degrees of freedom
#>
#> Number of iterations to convergence: 10
#> Achieved convergence tolerance: 3.515e-06
#>
coef(ans)
#> p q
#> 0.002278742 0.336735353
vcov(ans)
#> p q
#> p 5.249307e-07 -1.888583e-05
#> q -1.888583e-05 7.182630e-04
# And the plot method returns both, fitted and observed curve
plot(ans)