R/plot_diffnet2.r
diffusionMap.Rd
Using bi-dimensional kernel smoothers, creates a heatmap based on a graph layout
and colored accordingly to x
. This visualization technique is intended
to be used with large graphs.
diffusionMap(graph, ...)
diffmap(graph, ...)
# Default S3 method
diffusionMap(
graph,
x,
x.adj = round_to_seq,
layout = NULL,
jitter.args = list(),
kde2d.args = list(n = 100),
sharp.criter = function(x, w) {
wvar(x, w) > (max(x, na.rm = TRUE) - min(x, na.rm
= TRUE))^2/12
},
...
)
# S3 method for class 'diffnet'
diffusionMap(graph, slice = nslices(graph), ...)
# S3 method for class 'diffnet_diffmap'
image(x, ...)
# S3 method for class 'diffnet_diffmap'
print(x, ...)
# S3 method for class 'diffnet_diffmap'
plot(x, y = NULL, ...)
A square matrix of size \(n\times n\).
Arguments passed to method.
An vector of length \(n\). Usually a toa
vector.
Function to adjust x
. If not NULL
then it is applied
to x
at the beginning (see details).
Either a \(n\times 2\) matrix of coordinates or a layout
function applied to graph
(must return coordinates).
A list including arguments to be passed to jitter
.
A list including arguments to be passed to kde2d
.
A function choose whether to apply a weighted mean for each cell, or randomize over the values present in that cell (see details).
Integer scalar. Slice of the network to be used as baseline for drawing the graph.
Ignored.
A list of class diffnet_diffmap
A matrix of size \(n\times 2\) of vertices coordinates.
Output from kde2d
. This is a list with 3 elements, vectors
x
, y
and matrix z
of size \(n\times n\) (passed
via kde2d.args
).
Bandwidth passed to kde2d
.
The image is created using the function kde2d
from
the MASS package. The complete algorithm follows:
x
is coerced into integer and the range is adjusted to start from 1.
NA
are replaced by zero.
If no layout
is passed, layout is computed using
layout_nicely
from igraph
Then, a kde2d
map is computed for each level of x
. The
resulting matrices are added up as a weighted sum. This only holds if
at the cell level the function sharp.criter
returns FALSE
.
The jitter function is applied to the repeated coordinates.
2D kernel is computed using kde2d
over the coordinates.
The function sharp.criter
must take two values, a vector of levels and a
vector of weights. It must return a logical scalar with value equal to TRUE
when a randomization at the cell level must be done, in which case the final
value of the cell is chosen using sample(x, 1, prob=w)
.
The resulting matrix can be passed to image
or similar.
The argument x.adj
uses by default the function round_to_seq
which basically maps x
to a fix length sequence of numbers such that
x.adj(x)
resembles an integer sequence.
Vega Yon, George G., and Valente, Thomas W., Visualizing Large Annotated Networks as Heatmaps using Weighted Averages based on Kernel Smoothers (Working paper).
Other visualizations:
dgr()
,
drawColorKey()
,
grid_distribution()
,
hazard_rate()
,
plot_adopters()
,
plot_diffnet2()
,
plot_diffnet()
,
plot_infectsuscep()
,
plot_threshold()
,
rescale_vertex_igraph()
# Example with a random graph --------------------------------------------------
set.seed(1231)
# Random scale-free diffusion network
x <- rdiffnet(500, 4, seed.graph="scale-free", seed.p.adopt = .025,
rewire = FALSE, seed.nodes = "central",
rgraph.arg=list(self=FALSE, m=4),
threshold.dist = function(id) runif(1,.2,.4))
# Diffusion map (no random toa)
dm0 <- diffusionMap(x, kde2d.args=list(n=150, h=.5), layout=igraph::layout_with_fr)
# Random
diffnet.toa(x) <- sample(x$toa, size = nnodes(x))
# Diffusion map (random toa)
dm1 <- diffusionMap(x, layout = dm0$coords, kde2d.args=list(n=150, h=.5))
oldpar <- par(no.readonly = TRUE)
col <- colorRampPalette(blues9)(100)
par(mfrow=c(1,2), oma=c(1,0,0,0))
image(dm0, col=col, main="Non-random Times of Adoption\nAdoption from the core.")
image(dm1, col=col, main="Random Times of Adoption")
par(mfrow=c(1,1))
mtext("Both networks have the same distribution on times of adoption", 1,
outer = TRUE)
par(oldpar)
# Example with Brazilian Farmers --------------------------------------------
dn <- brfarmersDiffNet
# Setting last TOA as NA
diffnet.toa(dn)[dn$toa == max(dn$toa)] <-
NA
# Coordinates
coords <- sna::gplot.layout.fruchtermanreingold(
as.matrix(dn$graph[[1]]), layout.par=NULL
)
# Plotting diffusion
plot_diffnet2(dn, layout=coords, vertex.size = 300)
# Adding diffusion map
out <- diffusionMap(dn, layout=coords, kde2d.args=list(n=100, h=50))
col <- adjustcolor(colorRampPalette(c("white","lightblue", "yellow", "red"))(100),.5)
with(out$map, .filled.contour(x,y,z,pretty(range(z), 100),col))